Skip to contents

stack_coeff() takes several lm or glm models, pulls out their coefficients, standard errors, and confidence intervals, and stacks everything into a tibble() for easy comparison across models.

Usage

stack_coeff(..., ci = 0.95)

Arguments

...

lm or glm models to summarize and combine.

ci

width of confidence, default = 0.95.

Value

A tibble() with coefficients, confidence intervals, and standard errors.

Examples

# multiple lm example ----------------------------------
lm_1 = lm(mpg ~ cyl + disp + hp, data = mtcars)
lm_2 = lm(mpg ~ hp + drat + wt, data = mtcars)
lm_3 = lm(mpg ~ ., data = mtcars)
lm_combined = stack_coeff(lm_1, lm_2, lm_3)
lm_combined
#> # A tibble: 19 × 7
#>    coefficient model_name          estimate std_error  p_value lower_ci upper_ci
#>    <chr>       <chr>                  <dbl>     <dbl>    <dbl>    <dbl>    <dbl>
#>  1 (Intercept) mpg ~ cyl + disp +…  34.2      2.59    1.54e-13  28.9    39.5    
#>  2 cyl         mpg ~ cyl + disp +…  -1.23     0.797   1.35e- 1  -2.86    0.406  
#>  3 disp        mpg ~ cyl + disp +…  -0.0188   0.0104  8.09e- 2  -0.0401  0.00247
#>  4 hp          mpg ~ cyl + disp +…  -0.0147   0.0147  3.25e- 1  -0.0447  0.0153 
#>  5 (Intercept) mpg ~ hp + drat + …  29.4      6.16    5.13e- 5  16.8    42.0    
#>  6 hp          mpg ~ hp + drat + …  -0.0322   0.00892 1.18e- 3  -0.0505 -0.0139 
#>  7 drat        mpg ~ hp + drat + …   1.62     1.23    1.99e- 1  -0.898   4.13   
#>  8 wt          mpg ~ hp + drat + …  -3.23     0.796   3.64e- 4  -4.86   -1.60   
#>  9 (Intercept) mpg ~ .              12.3     18.7     5.18e- 1 -26.6    51.2    
#> 10 cyl         mpg ~ .              -0.111    1.05    9.16e- 1  -2.28    2.06   
#> 11 disp        mpg ~ .               0.0133   0.0179  4.63e- 1  -0.0238  0.0505 
#> 12 hp          mpg ~ .              -0.0215   0.0218  3.35e- 1  -0.0668  0.0238 
#> 13 drat        mpg ~ .               0.787    1.64    6.35e- 1  -2.61    4.19   
#> 14 wt          mpg ~ .              -3.72     1.89    6.33e- 2  -7.65    0.224  
#> 15 qsec        mpg ~ .               0.821    0.731   2.74e- 1  -0.699   2.34   
#> 16 vs          mpg ~ .               0.318    2.10    8.81e- 1  -4.06    4.69   
#> 17 am          mpg ~ .               2.52     2.06    2.34e- 1  -1.76    6.80   
#> 18 gear        mpg ~ .               0.655    1.49    6.65e- 1  -2.45    3.76   
#> 19 carb        mpg ~ .              -0.199    0.829   8.12e- 1  -1.92    1.52   

# sometimes you might just want 1 model's summary ------
single_lm = stack_coeff(lm_1)
single_lm
#> # A tibble: 4 × 7
#>   coefficient model_name           estimate std_error  p_value lower_ci upper_ci
#>   <chr>       <chr>                   <dbl>     <dbl>    <dbl>    <dbl>    <dbl>
#> 1 (Intercept) mpg ~ cyl + disp + …  34.2       2.59   1.54e-13  28.9    39.5    
#> 2 cyl         mpg ~ cyl + disp + …  -1.23      0.797  1.35e- 1  -2.86    0.406  
#> 3 disp        mpg ~ cyl + disp + …  -0.0188    0.0104 8.09e- 2  -0.0401  0.00247
#> 4 hp          mpg ~ cyl + disp + …  -0.0147    0.0147 3.25e- 1  -0.0447  0.0153 

# glm example ------------------------------------------
glm_1 = glm(vs ~ drat + hp, data = mtcars)
glm_2 = glm(vs ~ wt + qsec, data = mtcars)
glm_3 = glm(vs ~ ., data = mtcars)
glm_combined = stack_coeff(glm_1, glm_2, glm_3)
#> Waiting for profiling to be done...
#> Waiting for profiling to be done...
#> Waiting for profiling to be done...
glm_combined
#> # A tibble: 17 × 7
#>    coefficient model_name      estimate std_error     p_value lower_ci upper_ci
#>    <chr>       <chr>              <dbl>     <dbl>       <dbl>    <dbl>    <dbl>
#>  1 (Intercept) vs ~ drat + hp  0.656      0.566   0.256       -0.454    1.77   
#>  2 drat        vs ~ drat + hp  0.137      0.133   0.312       -0.124    0.397  
#>  3 hp          vs ~ drat + hp -0.00484    0.00104 0.0000639   -0.00687 -0.00281
#>  4 (Intercept) vs ~ wt + qsec -2.20       0.537   0.000309    -3.25    -1.15   
#>  5 wt          vs ~ wt + qsec -0.226      0.0495  0.0000857   -0.323   -0.129  
#>  6 qsec        vs ~ wt + qsec  0.188      0.0271  0.000000121  0.135    0.242  
#>  7 (Intercept) vs ~ .         -0.864      1.95    0.662       -4.69     2.96   
#>  8 mpg         vs ~ .          0.00341    0.0226  0.881       -0.0409   0.0477 
#>  9 cyl         vs ~ .         -0.159      0.103   0.137       -0.360    0.0424 
#> 10 disp        vs ~ .         -0.000895   0.00186 0.636       -0.00455  0.00276
#> 11 hp          vs ~ .          0.00289    0.00222 0.208       -0.00146  0.00724
#> 12 drat        vs ~ .          0.0204     0.170   0.906       -0.313    0.354  
#> 13 wt          vs ~ .         -0.0636     0.213   0.768       -0.481    0.354  
#> 14 qsec        vs ~ .          0.124      0.0731  0.105       -0.0195   0.267  
#> 15 am          vs ~ .         -0.213      0.216   0.334       -0.636    0.209  
#> 16 gear        vs ~ .          0.0286     0.155   0.855       -0.276    0.333  
#> 17 carb        vs ~ .         -0.0358     0.0857  0.680       -0.204    0.132